How to Use Autonomous Underwater Vehicle Gliders to Make Your Oceanography Better

Kipp Shearman College of Oceanic & Atmospheric Sciences Oregon State University

- Autonomous Underwater Gliders
- Describe some useful glider operations

 Endurance
 - oFootprint
 - oWeather

OSU Glider Group: Jack Barth Anatoli Erofeev Zen Kurokawa Kate Adams Piero Mazzini Chris Ordoñez Gonzalo Saldias Alejandra Sanchez

Thanks to: RV Elakha Captain and Crew (OSU), J. Brodersen (OSU), Laura Rubiano-Gomez (OSU), C. Jones (WRC), F. Stahr (UW), Miss Linda Captain and Crew, T. Peery (OSU), F. Chan, K. Page-Albins (PISCO), Oscar Pizarro (UdeC), Gadiel Alarcon and Nadin Ramirez (UdeC)

What's a glider?

• Autonomous underwater vehicle – a robot!

Flies by changing its buoyancy

- takes on water, becomes heavy and sinks
- wings turn vertical motion into forward motion
- expels water, becomes light and rises
- flies saw tooth pattern through the ocean

• Slow, but can stay out a long time

- ½ knot
- 3-4 week endurance

• Collects same data you would on a research vessel at a fraction of the cost

- Research vessel: approx. \$20K/day (fuel + crew)
- Glider: \$150K to buy + \$200-1000/day (batteries + communications + techs)
- 3500 days of glider operation:

3500 days x \$20K/day - 4 x (\$150K+3500 days x \$1000/day) = \$55 million saved!

7 ft long

100 lbs in air

GPS, Iridium and Freewave Antennae in tail fin

Aanderaa Optical Dissolved Oxygen sensor

CTD

Glider Control and more batteries

Science Bay

9

Air bladder

10

Pitch Batteries

Optical Sensors (Chl, CDOM and Backscatter)

Webb Slocum Electric Glider

Displacement Pump

Shelf Glider Sections

~20 km day (21+ day endurance)

Very high spatial resolution

Surface to Bottom coverage (200 m max)

Surface every 1-6 hr to get GPS fix, download data and receive new instructions (via Iridium)

Keep track via web:

gliderfs2.coas.oregonstate.edu/gliderweb

The OSU Glider Fleet

- **3** TWR Slocum 200 m CTD, chl, bs, cdom, DO CTD, microstructure
- 1 TWR Slocum 1000 m CTD, chl, dye, bs, ADCP
- 5 UW/iRobot/Kongsberg Seagliders 1000 m CTD, chl, bs, cdom, DO, PAR

Not true!

Just because it says autonomous, doesn't mean you get to sit around and do nothing ...

Useful Glider Ops Versus Less-Useful Glider Ops

	vertical	vertical	speed	horizontal	endurance	cost	synopticity	unique
	range	resolution		resolution		factors		advatages
Ship w/towed profiler	0-400 m	high	8 knots	high	30 days	ship-based	medium	3D surveys at high speed
\$\$\$\$	air-sea interface					operations		large, flexible payload
Mooring	full ocean depth	typically low	stationary	very low	1-2 years	ship for	high	long Eulerian time series
\$\$\$	air-sea interface					servicing	(temporal)	
Gliding AUV	0-1000 m	high	0.5 knot	high	6 months	semi-	low	endurance
\$\$						expendable		
Propeller AUV	0-200 m	high	3 knots	high	1-2 days	intensive	medium	precise navigation
<u> </u>						operations		
Float/drifter	0-1500 m	high	drifts w/	low	1-3 years	expendable	low	low cost
\$			currents					Lagrangian nature
Ship w/ CTD	full ocean depth	high	10 knots	typically low	30 days	ship-based	low	extensive range of science
\$\$\$\$	air-sea interface			l, .		operations		operations supported

- All platforms have strengths and weaknesses
- Glider strengths are low cost, high resolution and long endurance
- Glider weaknesses are slow speeds, coarse navigation, and limited payloads

What we must avoid at all costs is the op where you deploy a glider and then follow it around with a research vessel ...

Endurance

Newport Line

- 80 km cross-shelf
- Strong currents (50+ cm/s)
- Complex Bathymetry
- Historical Observations (1950s)

April 2006 – Nov 2014

- 3486 glider-days at sea
- 187 deployments
- 82,120 km
- 260,190 vertical profiles

Use a variety of ships to get the gliders in/out of the water

Be prepared for emergency recoveries

Don't assume piloting will be trivial

OSU Glider Positions, 2006-2013

Glider Stories: Jane is in a bit of a pickle ...

Wow!!! You are the best glider pilots in the world!!! I bow to your precision!!! osc

Oscar Schofield, Rutgers U.

We're collaborating with local fishermen ...

Enhancing Ship-based Survey Footprint

SI-02 Drift (5-9 Mar 2012) - MODIS-A N20 (8 Mar 2012, east) & AVHRR481 (11 Mar, west)

Average section

Vastly increased data and resolution at the front

Better characterization of the structure on small scales

Continuous Sampling in Bad Weather

Tropical Storm Hanna Sep 2008

Autono-my-ass

Autonomous Underwater Gliders

- Slow, rough navigation & limited sensor payload
- Cheap, high spatial resolution & long endurance
- Useful glider operations
 Endurance, Footprint & Weather